Extra Energy, LLC

Huff and Puff Process Utilizing Nitrogen Gas

Licensee of:
Nitrogen Oil Recovery Systems, LLC (NORS)
US Patent 6,244,341
Canadian Patent CA 2310959
Topics Outline

- Huff and Puff Process Utilizing Nitrogen Gas
- Benefits of Nitrogen – Process and Operational
- Other Energy Uses for Nitrogen
- Nitrogen Membrane Unit
- Primary Target Formations
- Test Project
- Project Design – Optimization and Development
- Project Development
- Contacts
Huff and Puff Process Utilizing Nitrogen Gas

- Huff and Puff process needs a treatment gas that will bypass oil during the Huff phase and displace oil during the Puff phase.
 - Nitrogen gas has the characteristics to best meet those requirements at a low cost.
- Other Huff and Puff processes primarily utilize a solvent to increase oil production — such as steam or carbon dioxide.
Process Benefits of Nitrogen

- During the treatment phase, nitrogen remains in gaseous form and does not dissolve in oil or water enabling it to go further into the well drainage area.
- During the treatment, soak, and production phases, the nitrogen dissipates into the well drainage area where it
 - Becomes trapped due to structural position, gas relative permeability, and gas hysteresis; and
 - Increases in volume with gas vaporization from the oil.
- Nitrogen gas that is in the water phase reduces the relative permeability to water.
Operational Benefits of Nitrogen

- Can generate nitrogen on site with a membrane unit.
- Cost effective – total cost is dependent on cost of fuel, size of unit, and length of use.
- Inert - easy to compress and handle.
- Easily available and easy to dispose.
- Environmentally friendly - same gas that is used in food storage and water bottling.
Other \(N_2 \) Energy Uses

- Under balanced Drilling
- Offshore platform utility
- Catalyst regeneration
- Pressure maintenance
- Enhanced oil - attic recovery
- Pipeline purging
- Tank and tanker blanketing
Nitrogen Membrane Unit

On-site unit -- 850 MCF/D @ 95% N2, 5% O2 and 145 psig
Primary Target Formations

Pressure-Depleted Dual-Porosity Reservoirs

- Process uses high perm system for a delivery system for treatment gas and production of mobilized oil.
- System provides large contact area for gas to penetrate the low perm matrix.
- Established relative perm to gas and compressible system to allow gas movement into matrix.
- Provides an EOR process for a reservoir class that has limited ability for classical displacement processes.
Typical Target Formation

Hondo Canyon – New Mexico
Test Project

BIG ANDY RIDGE PROJECT – LEE AND WOLFE COUNTIES IN KENTUCKY
Net Project Production

![Graph showing BOPD and MCFD over time with events labeled]

- Net Prod Increase
- Nitrogen Injection

Date Range:
- Dec-97 to Apr-04
Project Efficiency

Graph showing monthly ratio and cumulative injection versus cumulative increase over time.
Cum Recovery

Cum Incremental Oil

Cum Nitrogen Injection

Ratio MCF/BBL
Thousands

Jul-98 Oct-98 Apr-99 Jul-99 Jan-00 Apr-00 Jul-00 Jan-01 Apr-01 Jul-01 Jan-02 Apr-02 Jul-02 Jan-03 Apr-03 Jul-03
Typical Lease Production Analogs

![Graphs showing production data over time for different cycles.](image-url)
Huff and Puff Process Utilizing Nitrogen Gas has shown a four-fold increase in oil production with only a slight increase in water production.

Production Increases have been sustained over a four-year program and are still increasing.

Cum Gas Utilization of 2.8 MCF/bbl with projected to date gas utilization of 1.4 MCF/bbl.
Project Design - Optimization

- The Process is a multi-variable process. The primary process design parameters are:
 - Treatment Pressure
 - Treatment Rate
 - Cycle Volume
 - Soak Time
 - Cycle Frequency
- The optimum levels for the parameters are based on the utilization of existing surface and well equipment with the well/reservoir drainage volume and characteristics.
The three phases of Project Development are:

- Injectivity Test
- Pilot Cycles
- Full Scale Development
Contacts
Extra Energy, LLC
Licensee of Nitrogen Oil Recovery Systems (NORS)
US Patent 6,244,341

Robert L. Gaudin
309 West Seventh Street
Suite 500
Fort Worth, Texas
76102
rgaudin@extraenergy.net
817.723.9393